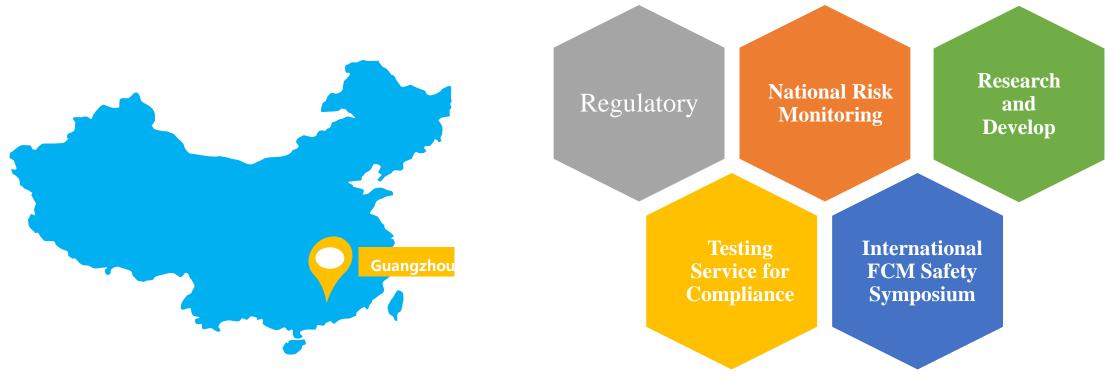


Sustainable Food Contact Material in China

National Reference Laboratory for Food Contact Material (Guangdong)
Guangzhou Customs Technology Center

Oscar Wang


Oscar.wang@iqtc-fcm.com

About IQTC-FCM

- IQTC is based in Guangzhou and is one of leading institute in China, under the organization of China Customs, with
 a history of more than 40 years, dedicating to provide the technical service for government and industry, particularly
 on food, food packaging and consumer products
- IQTC-FCM, a national reference lab, the chairman of China Food Industry FCM experts committee, specialized in regulatory, testing and risk assessment for food contact materials

CONTENTS

Part 1

Background

Part 2

Current Situation in China

Part 3

IQTC's work and Findings

Part 4

Summary

Since the invention of food package, we've been using it for more than a thousand years....

Plastic is one of the greatest 100 inventions in human history.

- Aerospace technology
- Cars and ships
- Electrical and electronic appliances
- Food packaging
- Modern agriculture
- Processing machinery
- Medical and pharmaceutical sciences

Plastic food packaging: most important role to make food into a food product

Natural protection

Packing protection

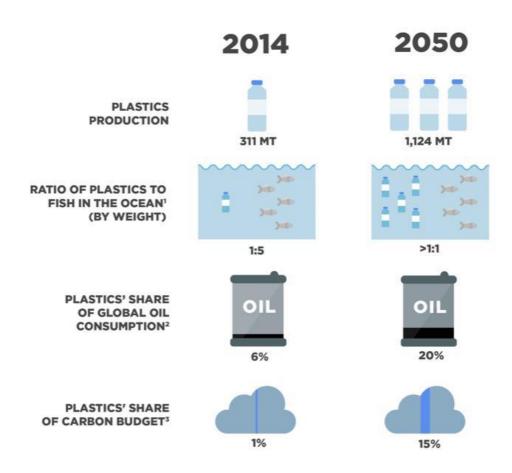
Prevent chemical/biological contamination

Avoid spoilage

long distance transportation

long-term storage

- Build a brand
- Improve consumer experience
- Address hunger
 - >1/4-1/3 food get spoiled
 - **≻**815m hungry people around the world

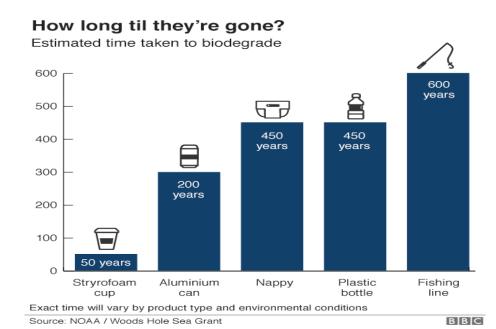


Improper use/disposal of plastics: serious marine ecological safety problems

8 million tons of plastics end up in the ocean

Centuries to be fully biodegraded

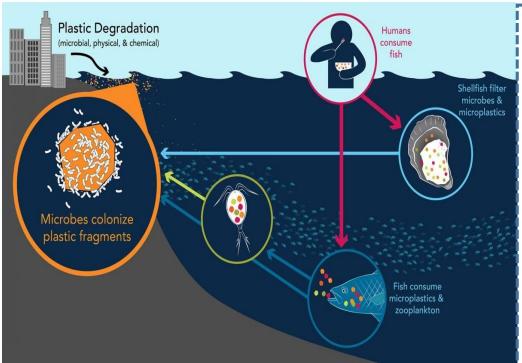
Loss of \$130 billion per year, weight of plastic wastes in the ocean> total weight of fish till 2050


Plastic waste is huge and difficult to recycle and biodegrade

25-35%
Plastic
package for
food

9% recycled 14%recycled

- C-C chemical bond is difficult to degrade
- Blending compounds: difficult to separate and difficult to classify
- cross-linked structure; insoluble, infusible, difficult to process



Improper use/disposal of plastics: serious biological and food safety problems

Marine trash: Endanger Marine biological safety, 50% beach wastes are single use disposable plastics

Microplastics: food safety and health risks

Marine pollution of plastic micro-debris in China is at the medium level

- Nearshore fish: 1.1-7.2 items per fish,
- Seashells: 0.9-4.6 items per gram of soft tissues

Global Action - Promoting Plastic Pollution Governance for Sustainable Development

Priority: Promote the sustainable development of Food Contact Materials

UNEP #CleanSeas Campaign By 2022

eliminate major sources of pollution, including microplastics in cosmetics and single-use disposable plastics

02

Restrict/ban single use disposable plastics

27 countries ban single use disposable plastics

29 countries impose special tax on single use disposable plastics

63 countries introduce EPR (Extended Producer Responsibility) approach

01

European Strategy

By 2025, >55% plastics are recyclable
By 2030, 100% of plastics packaging is reusable or recyclable

03

Industry Action

2025 commitment
Public education
Innovation and
practice(design/recycle/biodegradation)

The main approach taken on FCM

- Using biodegradable material to replace oil-based plastic
 The production volume of PLA、PHA are increasing
- Encouraging the use of recycled materials(R-PET)
 - ➤ EC proposed to approve >100 application of R-PET in FCM in 2019
 - ➤ 21% R-PET containers were used for FCM and beverage bottle*

Source: European Bioplastics, nova-Institute (2016).

CONTENTS

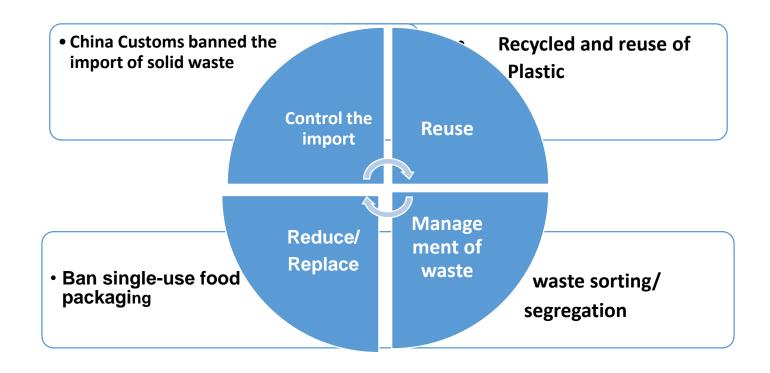
Part 1

Background

Part 2

Current Situation in China

Part 3


IQTC's work and Findings

Part 4

Summary

China is active on Sustainability

China's initiative: encourage recycling

June 5, 2019: Law of the People's Republic of China on the Prevention and Control of Environmental Pollution by Solid Wastes (Revised Draft)

2018: Revision of the Catalogue of Imported Waste Management

2017: "Initiative to Guide The Shift Toward Circular Development "plans to increase the recycling of major wastes from 47.6% in 2015 to 54.6% by 2020.

2015: "Specifications for the Industry of Comprehensive Utilization of Waste Plastics" and "Interim Regulations on the Announcement and Management System of Specifications for the Industry of Comprehensive Utilization of Waste" (Ministry of Industry and Information Technology)

2012: "Regulations on the Prevention and Control of Waste Plastics Processing and Utilization" (Ministry of Environmental Protection); Technical Specification for Pollution Control of Waste Plastics Recycling and Recycling (HJ/T 364-2007)

2010: Recycled plastic must not be used in plastic food containers, packaging materials, utensils, etc. Abolished in Dec

2008: Notice on Restricting Production and Sales of Plastic Shopping Bags (ODD, 2008)

The sheet of R-PET produced by Yingchuang was authorized to be used for manufacturing of food grade PET

2007: Regulations on the Management of Recycling Resources

China Initiative: Restricting single use disposable plastic products

In 2015, Jilin became the first province in China that banned single use non-degradable plastic products.

Single use non-biodegradable plastic bags and plastic tableware will be banned to manufacture, sell or use in Hainan province by 2020.

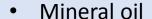
The production, sale and use of the plastic products listed in the Catalog of Non-degradable Single Use Plastic Products Banned In Hainan Province, in addition to bags and tableware, will be prohibited by 2025 in the province,

Impact to China Food Industry

China: largest country to produce plastics: 30%

China's food and beverage industry posted a record high of around 4.3 trillion yuan in revenue in 2018, accounted for 11.2% of the total volume of retail sales, and 4.7% of the total volume of National GDP

The waste volume obtain from take way single-use food packaging in China is staggering



Question: Can biodegradable or recycled materials be directly used to make FCMs in China?

- Consumer misuse
- Non-food application
- Degradation
- Chemicals from other materials
- Chemicals used in the recycling process

- Phthalates
- Photo-initiator
- Anti-oxidant
- Pesticides
- Oligomer

.

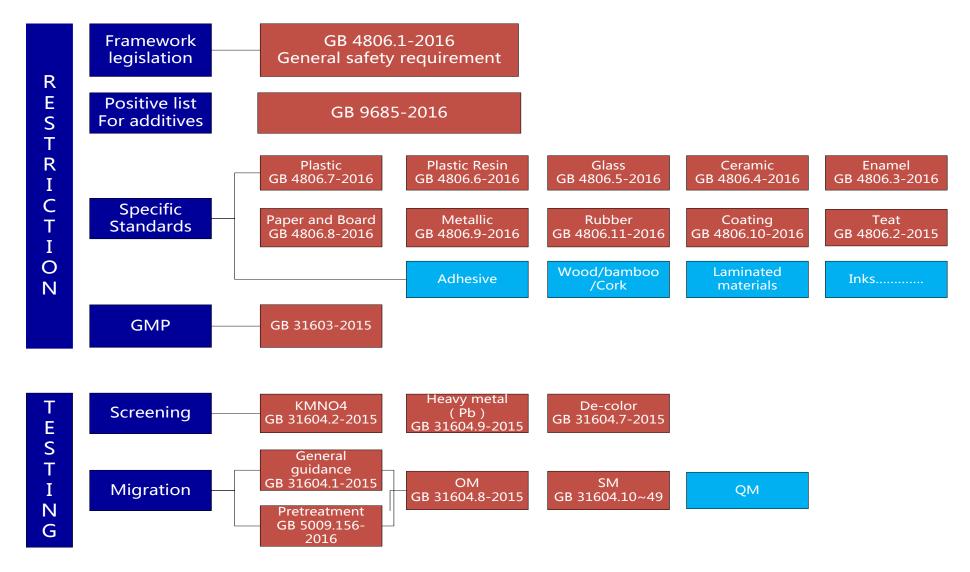
The Management system on FCMs was reshaped

National Heath commission

Regulation (Mandatory standard)

State Administration for Market Regulation

Domestic official control



General Administration of Customs of China

Boarder control

New GB Regulation System on FCM: Enforced Since 2017

The latest development for FCM legislations

Reviewed by Committee

GB 4806.X Multilayer material and articles

GB 4806.X Wood, Bamboo and Cork

GB 4806.X Starch based material

GB 31604.X PAAs migration

GB 31604.X NP migration

GB 31604.X acrylic acid and

methacrylic acid migration

On processing/Consultation

GB 4806.X Printing Ink

GB 4806.X Regenerated

cellulose film

GB 4806.X Adhesive

GB 31604.X Ethylene-2-norbornene migration

GB 31604.X Solvent residual

Kick off Revision

GB 4806.6 Plastic resin

GB 4806.7-2016 Plastic

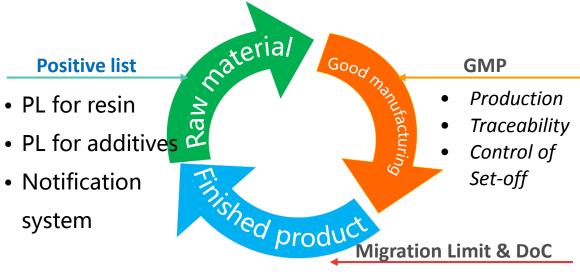
GB 4806.8-2016 Paper and board

GB 4806.9-2016 Metallic

GB 4806.10-2016 Coating

GB 4806.11-2016 Rubber

GB31604.1 Guide to migration


test

GB31604.30 Phthalates

GB31604.47 OBA in paper

Covering the whole supply chain: from chemicals to the table

- Specific migration, overall migration
- Declaration of compliance(DoC)

Need to full fill the

requirements of GB standards

Core requirement: Three of "shall not"

- Shall not endanger the human health under intended/foreseeable use
- Shall not cause the change of composition and organoleptic characters
- <u>Shall not cause</u> technical effects to food

New Petition (Single approve)

Application form
Chemical identification, physical and chemical properties
Technical justification, function and condition
Manufacturing process
Quality specification, test methods and test reports
Toxicological data
Migration Study
exposure assessment
Regulatory status in other countries
Relevant documents for petition of new substance if it is imported
Other documents useful for the expert pannel review (ISO Certificate etc.)
Information for public notification

Food Industry

Safety/Risk evaluation leads to solutions

CONTENTS

Part 1

Background

Part 2

Current Situation in China

Part 3

IQTC's work and Findings

Part 4

Summary

An investigation on safety of biodegradable and recycled materials intend for contact with food

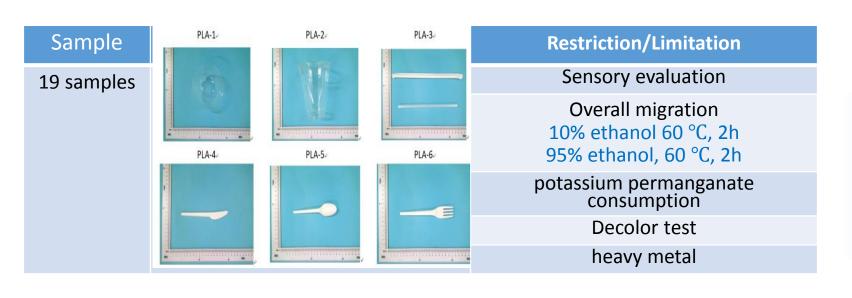
FCMs

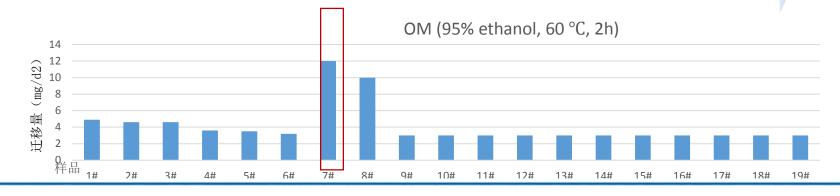
- •PLA
- •R-PET
- •R-PE
- •R-Paper and board

Compliance check

- Compliance of specified limitation
- Assessment of NIAS
 as requested by
 framework regulation

Techniques

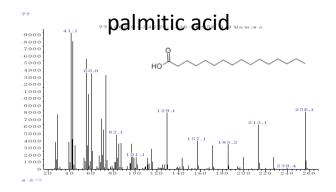

- HS-GC-MS
- IR
- GC×GC-TOFMS
- UPLC-TOFMS

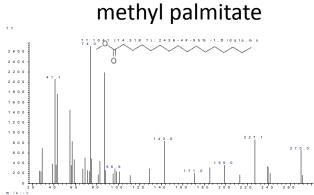

Biodegradable materials - PLA

PLA: Compliance of specified limitation

PLA, as kind of plastic, shall comply with the plastic Regulation: GB4806.7

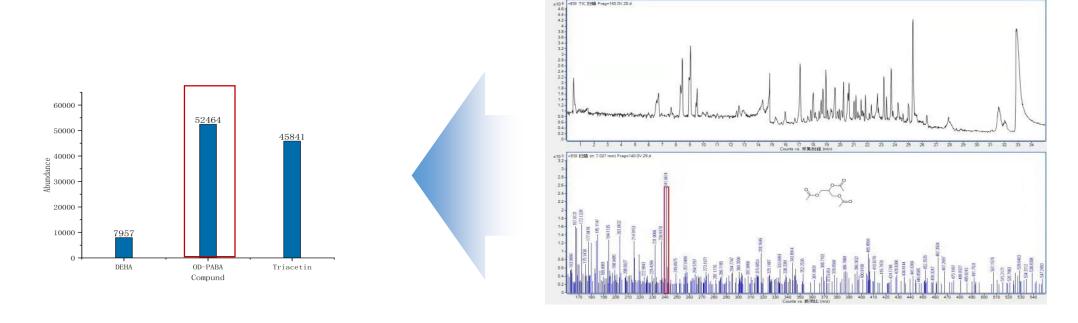
One sample failed to comply with OML (95% ethanol, 60 °C, 2h)




PLA: NIAS assessment

Volatile compounds are not detected by HS-GC-MS

Certain type of semi-volatile compounds were found in 95% ethanol (60 °C, 2h) by GC-MS

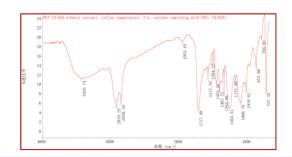

Mainly screened substances	Possible application	CAS No		Authorized?	Crammer classification
lactide	monomer	95-96-5/4511-42-6	IAS	Υ	Class I
lactic acid	monomer	50-21-5	IAS	Υ	Class I
Methyl palmitate		112-39-0	NIAS	N	Class I
Palmitate acid		57-10-3	NIAS	N	Class I
Ethyl palmitate	lubricant	628-97-7	NIAS	N	Class I
Methyl stearate		112-61-8	NIAS	N	Class I
Stearic acid		57-11-4	IAS	Y	Class I
Eethyl stearate		111-61-5	NIAS	N	Class I
DEHP	plasticizer	117-81-7	IAS	Y	Class I

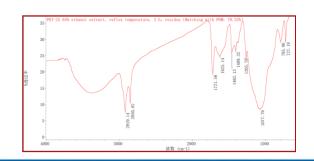
Nonvolatile compounds --- UPLC-Q-TOF

- Glyceryl triacetate, di (2-ethylhexyl) adipate (DEHA) are authorized plasticizers
- The OD-PABA is not in the list of GB 9685, but belongs to Cramer class I.

The commercial PLA sold in the market pose less safety concern.

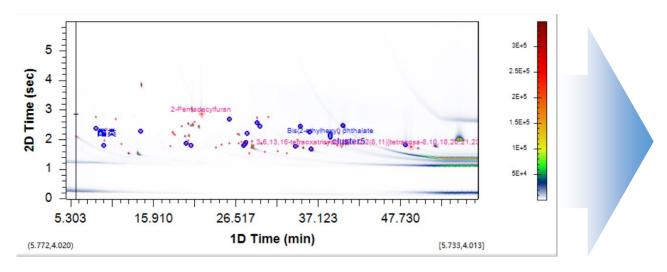
Recycled materials


R-PET: Compliance of specified limitation


R-PET Particle shall comply with Plastic resin Regulation B4806.6

Sa	ample		Limitation	
9 sa	9 samples	RI-1	Lead (4% acetic acid, reflux 0.5h) water extract (reflux, 0.5h)	
		4% acetic acid extract (reflux, 0.5h)	> 90% compliance	
		RET-3	65% ethanol extract (reflux, 2h)	> 30% compliance
			n-hexane extract (reflux, 1H)	,
			water extract (reflux, 0.5h)	

- The non-compliance cases: 65% ethanol extract (reflux, 2h), n-hexane extract (reflux, 1H), water extract (reflux, 0.5h).
- Identification of non-compliance sample : the extract refer to PET or POM polymer(polyformaldehyde)



R-PET: Volatiles and semi volatiles compounds

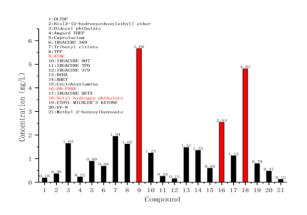
Semi volatile compounds : GC×GC-TOF

Column set: weak polar-nonpolar (DB-17-DB-5)

91 semi volatile compounds were found

classification of compounds	number	Proportion of peak area
Ketone	12	38.69%
ester	40	17.84%
phthalate	6	10.94%
phenol	10	7.20%
alkane	2	1.35%

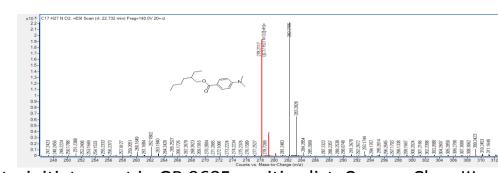
The following compounds were detected with concentration above 7 mg/kg

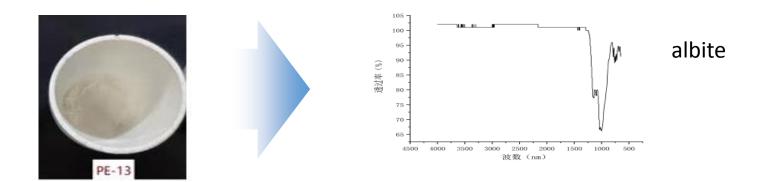

- · DEHP, which is only allowed to be used in PVC. SML = 1.5mg / kg
- · 3,6,13,16-tetraoxtricyclo [16.2.2 (8,11)] tetracosa-8,10,18,20,21,23-hexaene-2,7,12,17-tetrane is classified as NIAS and Cramer III
- . 2-pentadecylfuran is NIAS and Cramer III.

R-PET: Nonvolatile compounds

21 compounds were detected:

- Oligomers (Tetraethylene glycol, terephthalic acid bis (2-hydroxyethyl) ester),
- Fungicides (4-chlorobenzoic acid),
- Antioxidants (antioxidant 245, etc.),
- Surfactants (sulfonated Di-isooctyl succinate),
- Plasticizers (o-benzene, citric acid ester),
- Photo-initiators (photo-initiators 907, etc.),
- flame retardants (tris (butyl-oxyethyl) phosphate).
- UV absorber (UV-9)...




Photo-initiator, not in GB 9685 positive list ,Cramer Class III

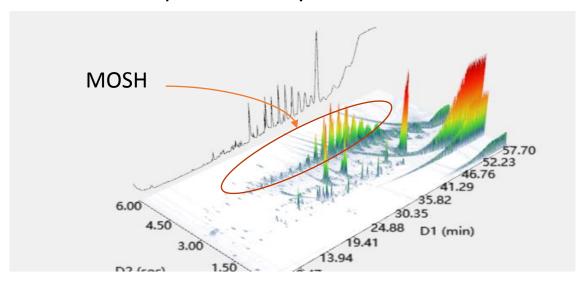
- Number of semi volatile and non-volatile compounds were detected in R-PET particles
- Some of compounds are NIAS, not in the positive list, caution and further investigated is needed if they are used for FCMs.

R-PE: Compliance of specified limitation

Sample				Limitation	compliance
9 Particle				Loss on drying (90 °C ~ 95 °C, 2h) burning residue (90°C~95°C, 2h)	Υ
samples		2300	all qualified n-hexane extract (reflux, 2h)	Υ	
	190	burning residue	7 samples no comply		

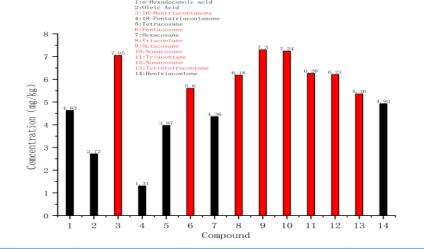
Inorganic filler may be the main cause of non-compliance

R-Paper: Compliance of specified limitation


- Check the compliance against GB 4806.8
- All tested samples does not comply

Sample		Limitation	compliance
7 samples	7 samples	Sensory (sample)	Υ
	P	Heavy metals (as Pb) (4% acetic acid, 60°C, 2h)	Υ
		As	Υ
		Formaldehyde extractive (water, 80°C, 2h)	Υ
		Migration of BPA (4% acetic acid, 70°C, 2h)	Υ
		Overall migration (10% ethanol, 70°C, 2h)	Υ
		Overall migration (4% acetic acid, 70°C, 2h)	Υ
		Extractable chloropropanol(water,80°C,2h)	N
		Pb	N
		Potassium permanganate consumption (distilled water, 60°C, 2h)	N
		Fluorescent substances (at wavelength of 254nm and 365nm)	N
		Sensory (simulant)	N

R-Paper: volatiles and semi volatiles compounds


Semi volatile compounds analysis: GC×GC-TOF

253 compounds detected

classification of compounds	number	Proportion of peak area
alkane	52	56.67%
nitrogen compounds	7	13.67%
ketone	8	8.39%
acid	13	6.16%
Polyphenyl ring compounds	5	2.37%
ether	5	1.97%
alcohol	10	1.61%
Halogen compounds	3	1.57%
cycloalkane	19	1.23%
benzene compounds	18	0.76%
ester	12	0.46%
phenolic compounds	2	0.43%
sulfur compounds	3	0.22%

- Mineral oil is commonly detected in recycled paper;
- The characteristic compounds in recycled paper are hexadecylic acid, octadecanoic acid (crameri), 16-31 ketone, 18-35 ketone (crameri class II);
- The content of characteristic compounds were usually above 10 ppm by semi quantitative analysis.

Project team

Prof. Marco Zhong

Prof. Li Dan, Dr. Liu Hong, Dr. Pan Jingjing, Dr. Ren Zhaofang

Prof. Qinbao Lin

Zhifeng Chen, Lixian Zhu

CONTENTS

Part 1

Background

Part 2

Current Situation in China

Part 3

IQTC's work and Findings

Part 4

Summary

- Sustainability is hot topic in the world, China is active
- Food safety is the bottom line, China has reshaped the management system on FCMs
- The studied of commercial PLA FCMs pose less safety concern; There are certain type of high
 concerned compounds found in the recycled materials, which may pose a safety concern with
 their toxicity characterization.
- More investigation are needed for the migration of recycled materials and degradable materials to provide more accurate data for the risk assessment
- For recycled materials and degradable materials(except PLA、 PBAT、 PBS) intended to be used for food contact, the new petition process for every single case is necessary

You' re welcomed to visit us

Safety is non-negotiable Sustainability of FCM is demanded